博客
关于我
教程 | 深度学习 + OpenCV,Python实现实时视频目标检测
阅读量:479 次
发布时间:2019-03-06

本文共 441 字,大约阅读时间需要 1 分钟。

点击上方“迈微AI研习社”,选择“星标★”公众号

重磅干货,第一时间送达

format,png

来自丨机器之心 路雪、李泽南

使用 OpenCV 和 Python 对实时视频流进行深度学习目标检测是非常简单的,我们只需要组合一些合适的代码,接入实时视频,随后加入原有的目标检测功能。

在本文中我们将学习如何扩展原有的目标检测项目,使用深度学习和 OpenCV 将应用范围扩展到实时视频流和视频文件中。这个任务会通过 VideoStream 类来完成。

  • 深度学习目标检测教程:http://www.pyimagesearch.com/2017/09/11/object-detection-with-deep-learning-and-opencv/

  • VideoStream 类教程:http://www.pyimagesearch.com/2016/01/04/unifying-picamera-and-cv2-videocapture-into-a-single-class-with-opencv/

转载地址:http://xoydz.baihongyu.com/

你可能感兴趣的文章
Needle in a haystack: efficient storage of billions of photos 【转】
查看>>
NeHe OpenGL教程 07 纹理过滤、应用光照
查看>>
NeHe OpenGL教程 第四十四课:3D光晕
查看>>
Neighbor2Neighbor 开源项目教程
查看>>
neo4j图形数据库Java应用
查看>>
Neo4j图数据库_web页面关闭登录实现免登陆访问_常用的cypher语句_删除_查询_创建关系图谱---Neo4j图数据库工作笔记0013
查看>>
Neo4j图数据库的介绍_图数据库结构_节点_关系_属性_数据---Neo4j图数据库工作笔记0001
查看>>
Neo4j图数据库的数据模型_包括节点_属性_数据_关系---Neo4j图数据库工作笔记0002
查看>>
Neo4j安装部署及使用
查看>>
Neo4j电影关系图Cypher
查看>>
Neo4j的安装与使用
查看>>
Neo4j(1):图数据库Neo4j介绍
查看>>
Neo4j(2):环境搭建
查看>>
Neo4j(3):Neo4j Desktop安装
查看>>
Neo4j(4):Neo4j - CQL使用
查看>>
Neo图数据库与python交互
查看>>
NEO改进协议提案1(NEP-1)
查看>>
Neo私链
查看>>
NervanaGPU 项目使用教程
查看>>
Nerves 项目教程
查看>>