博客
关于我
教程 | 深度学习 + OpenCV,Python实现实时视频目标检测
阅读量:479 次
发布时间:2019-03-06

本文共 441 字,大约阅读时间需要 1 分钟。

点击上方“迈微AI研习社”,选择“星标★”公众号

重磅干货,第一时间送达

format,png

来自丨机器之心 路雪、李泽南

使用 OpenCV 和 Python 对实时视频流进行深度学习目标检测是非常简单的,我们只需要组合一些合适的代码,接入实时视频,随后加入原有的目标检测功能。

在本文中我们将学习如何扩展原有的目标检测项目,使用深度学习和 OpenCV 将应用范围扩展到实时视频流和视频文件中。这个任务会通过 VideoStream 类来完成。

  • 深度学习目标检测教程:http://www.pyimagesearch.com/2017/09/11/object-detection-with-deep-learning-and-opencv/

  • VideoStream 类教程:http://www.pyimagesearch.com/2016/01/04/unifying-picamera-and-cv2-videocapture-into-a-single-class-with-opencv/

转载地址:http://xoydz.baihongyu.com/

你可能感兴趣的文章
Netty源码—5.Pipeline和Handler二
查看>>
Netty源码—6.ByteBuf原理一
查看>>
Netty源码—6.ByteBuf原理二
查看>>
Netty源码—7.ByteBuf原理三
查看>>
Netty源码—7.ByteBuf原理四
查看>>
Netty源码—8.编解码原理一
查看>>
Netty源码—8.编解码原理二
查看>>
Netty源码解读
查看>>
Netty的Socket编程详解-搭建服务端与客户端并进行数据传输
查看>>
Netty相关
查看>>
Netty简介
查看>>
Netty速成:基础+入门+中级+高级+源码架构+行业应用
查看>>
Netty遇到TCP发送缓冲区满了 写半包操作该如何处理
查看>>
Netty:ChannelPipeline和ChannelHandler为什么会鬼混在一起?
查看>>
Netty:原理架构解析
查看>>
Network Dissection:Quantifying Interpretability of Deep Visual Representations(深层视觉表征的量化解释)
查看>>
Network Sniffer and Connection Analyzer
查看>>
Network 灰鸽宝典【目录】
查看>>
NetworkX系列教程(11)-graph和其他数据格式转换
查看>>
Networkx读取军械调查-ITN综合传输网络?/读取GML文件
查看>>